Mesenchymal stem cells play a potential role in regulating the establishment and maintenance of epithelial-mesenchymal transition in MCF7 human breast cancer cells by paracrine and induced autocrine TGF-β.
نویسندگان
چکیده
Although the epithelial-mesenchymal transition (EMT) is a normal process that occurs during development, it is thought to be associated with cancer progression and metastasis. Emerging evidence links mesenchymal stem cells (MSCs) in the tumor microenvironment with the occurrence of EMT in cancer progression. In this study, the human breast cancer cell line MCF7 was co-cultured with human adipose-derived MSCs (hAD-MSCs) in a transwell system. Co-cultured cells were analyzed for changes in cellular morphology, EMT markers, protein expression and tumor characteristics. We found that co-cultured MCF7 cells underwent EMT and established a stable mesenchymal phenotype after prolonged co-culturing. Here, we demonstrate that paracrine transforming growth factor-β1 (TGF-β1) secreted by hAD-MSCs regulated the establishment of EMT in MCF7 cells by targeting the ZEB/miR-200 regulatory loop. The downregulation of paracrine TGF-β1 levels can inhibit and reverse the EMT progress by downregulating ZEB1/2 and upregulating miR-200b and miR-200c. The maintenance of a stable mesenchymal state by MCF7 cells required the establishment of autocrine TGF-β signaling to drive and sustain ZEB expression, which had been initiated by the prolonged co-culturing with hAD-MSCs. These results suggest that MSCs may promote breast cancer metastasis by stimulating and facilitating the EMT process.
منابع مشابه
An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition
Epithelial-mesenchymal transition (EMT) is a form of cellular plasticity that is critical for embryonic development and tumor metastasis. A double-negative feedback loop involving the miR-200 family and ZEB (zinc finger E-box-binding homeobox) transcription factors has been postulated to control the balance between epithelial and mesenchymal states. Here we demonstrate using the epithelial Madi...
متن کاملMesenchymal Stem Cells Trigger Epithelial to Mesenchymal Transition in the HT-29 Colorectal Cancer Cell Line
Background and Objective: Mesenchymal stem cells (MSCs) promote metastasis in colorectal cancer; however, the mechanism underlying this process is not fully understood. Epithelial to mesenchymal transition (EMT) is a key step in tumor acquisition of metastatic phenotype. We aimed to investigate the effect of MSCs on the expression of EMT markers, as well as cancer stem cell markers in HT-29 col...
متن کاملCrosstalk between Tumor Cells and Immune System Leads to Epithelial-Mesenchymal Transition Induction and Breast Cancer Progression
Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, imm...
متن کاملAnalysis of epithelial mesenchymal transition markers in breast cancer cells in response to stromal cell-derived factor 1
Introduction: Metastasis is the main cause of cancer death; however, the underlying mechanisms of metastasis are largely unknown. The chemokine of stromal cell-derived factor 1 (SDF1) and the process of epithelial mesenchymal transition (EMT), both have been declared as important factors to promote cancer metastasis; however, Conspicuously, the relation between them has not been recognized well...
متن کاملCD109 released from human bone marrow mesenchymal stem cells attenuates TGF-β-induced epithelial to mesenchymal transition and stemness of squamous cell carcinoma
Although there is increasing evidence that human bone marrow mesenchymal stem cells (hBM-MSCs) play an important role in cancer progression, the underlying mechanisms are poorly understood. Transforming growth factor β (TGF-β) is an important pro-metastatic cytokine. We have previously shown that CD109, a glycosylphosphatidylinositol-anchored protein, is a TGF-β co-receptor and a strong inhibit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of oncology
دوره 41 3 شماره
صفحات -
تاریخ انتشار 2012